Strict topology and $P$-spaces
نویسندگان
چکیده
منابع مشابه
Topology and Sobolev Spaces
with 1 ≤ p <∞. W (M,N) is equipped with the standard metric d(u, v) = ‖u− v‖W1,p . Our main concern is to determine whether or not W (M,N) is path-connected and if not what can be said about its path-connected components, i.e. its W -homotopy classes. We say that u and v are W -homotopic if there is a path u ∈ C([0, 1],W (M,N)) such that u = u and u = v. We denote by ∼p the corresponding equiva...
متن کاملStrict Sequential P-completeness
In this paper we present a new notion of what it means for a problem in P to be inherently sequential. Informally, a problem L is strictly sequential P-complete if when the best known sequential algorithm for L has polynomial speedup by parallelization, this implies that all problems in P have a polynomial speedup in the parallel setting. The motivation for defining this class of problems is to...
متن کاملPOINTWISE CONVERGENCE TOPOLOGY AND FUNCTION SPACES IN FUZZY ANALYSIS
We study the space of all continuous fuzzy-valued functions from a space $X$ into the space of fuzzy numbers $(mathbb{E}sp{1},dsb{infty})$ endowed with the pointwise convergence topology. Our results generalize the classical ones for continuous real-valued functions. The field of applications of this approach seems to be large, since the classical case allows many known devices to be fi...
متن کاملStone-weierstrass Theorems for the Strict Topology
1. Let X be a locally compact Hausdorff space, E a (real) locally convex, complete, linear topological space, and (C*(X, E), ß) the locally convex linear space of all bounded continuous functions on X to E topologized with the strict topology ß. When E is the real numbers we denote C*(X, E) by C*(X) as usual. When E is not the real numbers, C*(X, E) is not in general an algebra, but it is a mod...
متن کاملSmooth biproximity spaces and P-smooth quasi-proximity spaces
The notion of smooth biproximity space where $delta_1,delta_2$ are gradation proximities defined by Ghanim et al. [10]. In this paper, we show every smooth biproximity space $(X,delta_1,delta_2)$ induces a supra smooth proximity space $delta_{12}$ finer than $delta_1$ and $delta_2$. We study the relationship between $(X,delta_{12})$ and the $FP^*$-separation axioms which had been introduced by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1976
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1976-0425603-6